Persistence landscapes could help achieve unbiased and accurate radiological interpretation

· News-Medical

"[…] persistence landscapes have the potential to play a crucial role in identifying and mitigating biases in radiological practice, whether these biases stem from demographic factors, equipment variations, or the limitations of AI algorithms."

Persistence landscapes are particularly effective at reducing random noise in medical images while preserving important details. This makes it easier for clinicians and researchers to focus on the most meaningful parts of an image. The method also improves AI tools by addressing common problems, such as when models are too focused on specific details or when they miss important information. Additionally, persistence landscapes also simplify the integration of data from different scan types, like positron emission tomography (PET) and magnetic resonance imaging (MRI), without introducing new errors.

Despite its potential, the use of persistence landscapes in real-world medical imaging comes with challenges. It requires powerful computers to process large data, which can be costly and time-consuming, and expert interpretation for meaningful use. Better tools are needed to make this method more accessible for clinicians. While integrating this method into clinical settings will take effort, the benefits could be transformative. With further research and refinement, persistence landscapes hold enormous promise for advancing equitable healthcare.

"Persistence landscapes represent a powerful new tool in our ongoing efforts to achieve unbiased and accurate radiological interpretation."

Source:

Oncotarget

Journal reference: