Ecoflex skin replicas offer new tool for studying infection risks from intravenous catheters

· News-Medical

"We have been slow in finding solutions for preventing infections from intravenous catheters," said Althumayri. "A reason could be that we lack good platforms to test new catheter designs or wearable biosensor technologies and train staff so that the number of infections can be reduced."

To address this gap, the researchers turned to Ecoflex 00-35, a fast-curing, biocompatible rubber used for various applications, including prosthetics for special effects. First, they created molds of common intravenous insertion sites, such as the elbows, hands and forearms. Then, by pouring Ecoflex into the molds that contained artificial bones and tubes acting as veins, the researchers created skin-like replicas.

Next, the researchers tested if the Ecoflex skin replicas had properties that matched that of real skin. They measured the replicas' wettability, bacterial adhesion and mechanical properties, such as elasticity and resilience. The researchers found that the Ecoflex models could replicate human skin roughness within a 7.5% error margin. Further, high-resolution imaging showed that bacteria could adhere to the skin replica and grow on it.

Then, in a key experiment, the researchers simulated an intravenous catheter insertion into an Ecoflex hand replica that they created. This artificial hand effectively modeled phases of bacterial growth, showing promise that these replicas can be used for implementing infection control measures and improving the design of medical devices like catheters.

However, the researchers noted that their current experiments do not entirely model real-world conditions.

"Developing realistic skin models that can mimic the human skin is an important initial step," said Dr. Hatice Ceylan Koydemir, corresponding author on the study and assistant professor in the Department of Biomedical Engineering with a research program housed within the Texas A&M University Center for Remote Health Technologies and Systems. "But we think that incorporating additional elements, like body fluids and other clinically relevant situations, in future experiments will bolster our findings and further validate Ecoflex's potential for medical applications."

Other contributors to the research include Azra Yaprak Tarman, a graduate student in the Department of Biomedical Engineering.

Source:

Texas A&M University

Journal reference: